On the Vulnerability of Low Entropy Masking Schemes

Xin Ye, Thomas Eisenbarth CARDIS 2013 – 11/27/2013

Outline

- Masking and Low Entropy Masking (LEMS)
- Ways to exploit remaining leakage
- Collision Attacks on LEMS
- Results on DPA contest v4 traces

Implementation Attacks

- Critical information leaked through side channels
- Adversary can extract critical secrets (keys etc.)
- Usually require physical access (proximity)

Ways to Prevent Power Analysis

Hiding: Decreasing Signal to Noise ratio Noise generator, randomized execution order, dual-rail/asynchronous logic styles... Problem: some signal remains,

resynchronization, etc.

Masking: Randomized internal states additive/multiplicative masks, Higher-order masking

Problem: leakage remains, masks also leak

Effective methods are costly!

Every single countermeasure can be overcome.

Masking (concept)

No Masking:

Mask ensures that all internal states are equally likely

Low Entropy Masking Schemes

Goal: Lower implementation cost at *comparable* security:

- no 1st order leakage:
- Resistance against DPA/CPA
- Masks *m* are from *a subset* of {0,1}ⁿ
 →low entropy masks
- Self-Complementary Property for masks: $\mathcal{M} = \overline{\mathcal{M}}$
 - For leaking y_m , there is a $y_{m\prime} = \overline{y_m}$, i.e. bitwise inverse also possible
 - \rightarrow the average leakage is constant

Claim: $I(y_m, y) \approx 0 \rightarrow$ negligible mutual information This is true if uniform input distribution is assumed

If we fix an input *x*:

Classic Masking: all intermediate values appear with equal probability

LEMS: Only few intermediate values possible

Full Entropy Masking Schemes (FEMS)

Fix input x, all values are possible to leak

Low Entropy Masking Schemes (LEMS)

Fix input x, only a few leaking values

Leakage Distribution

 Observed distribution for *fixed input* is mixture (sum) of leakage of possible masked values

→ Distributions for *different inputs* x are distinguishable

Outline

- Masking and Low Entropy Masking (LEMS)
- Ways to exploit remaining leakage
- Collision Attacks on LEMS
- Results on DPA contest v4 traces

Leakage Distribution Decomposition Attack

Concept: How to test subkey hypothesis:

- 1. Fix input x and predict leaking set $(\hat{y})_{\mathcal{M}}$
- 2. Get sub-distributions and rebuild mixture \rightarrow output is leakage distribution for y_M
- 3. Measure closeness between observed and rebuilt distributions

Repeat for all inputs x and all subkey hypotheses g

LDDA: Practicality

Problem: How to estimate sub-distributions?

LDDA with profiling:

- Assumes known masks during profiling
- Similar to template-like attacks on masking: [SLP05,OM07,LP07]
- **Difference:** Univariate leakage sufficient!

LDDA without profiling:

- Assumes linear leakage model, e.g. Hamming weight (similar to linear regression methods)
- Works with unknown masks
- Again, univariate leakage sufficient!

Outline

- Masking and Low Entropy Masking (LEMS)
- Ways to exploit remaining leakage
- Collision Attacks on LEMS
- Results on DPA contest v4 traces

Side Channel Collisions in AES

Collision: Querying same S-box value twice

How to Improve Collisions

Collisions: Simple approach, but requires strong leakage Improvement: Correlation Collision Attack [MME10]

- Use many measurements
- Compute average for each possible output
- Use all S-box output leakages for comparison
- → Strong attack, breaks many protected implementations

Leaking Set Collision Attack

- Find two *different* inputs $x \neq x'$ for which the leaking set $(y)_{\mathcal{M}}$ is **identical**
- Exists due to *self-complementary* masks (m, \overline{m})

Leaking Set Collision Attack (II)

• For **correct** key guess: $y' = \overline{y}$

Fix input x

Find x'x' = f(x, k)

• For wrong key guess: $y' \neq \overline{y}$

$$\begin{aligned} x' &= f(x, g \neq k) \quad (y') \\ \Rightarrow (y)_{\mathcal{M}} \neq (y')_{\mathcal{M}} \end{aligned}$$

Leaking Set Collision

$$\Rightarrow (y)_{\mathcal{M}} = (y')_{\mathcal{M}}$$

Distance Metric: Kolmogorov-Smirnov (KS-distance)

Leaking Set Collision Attack (III)

- 1. Derive set collisions for masked AES Sbox output $x' = f(x,k) = k \bigoplus S^{-1}(0 \operatorname{xff} \bigoplus S(x \bigoplus k))$
- 1. Compare observed leakage distributions
- 2. Choose key guess with lowest distance

Leaking Set Collision Attack (IV)

- Like Correlation Collision Attack, all traces are grouped and compared
- Unlike correlation collision attacks, works on inputs for the *same* s-box (same univariate leakage point)
- Needs sufficient measurements to approximate distribution

Outline

- Masking and Low Entropy Masking (LEMS)
- Ways to exploit remaining leakage
- Collision Attacks on LEMS
- Results on DPA contest v4 traces

Experimental Results

Target: RSM AES-256 software implementation from DPA contest v4:

- 8-bit microcontroller (strong leakage)
- 16 self-complementary masks
- 100.000 traces available (known mask and key)
- Attack performed on s-box output

LDDA with profiling

- 50,000 traces to build univariate templates (i.e. sub-distributions)
- 8k traces to test subkey hypotheses (2k, 16k next slide)
- Mask known during profiling
- KS-distance (y-axis) to measure similarity

LDDA with profiling

- Overall distance decreases
- Correct key is better distinguishable with increased number of measurements

LDDA without profiling

- Assumed leakage model: Hamming Weight
- Parameters estimated over all traces
- Outcome depends on parameter choice

	Number of Traces	20k	40k	60k	80k	100k
▶	GE average case	19.74	16.65	4.02	2.93	1.31
	GE worst case	30	33	11	9	5
	GE best case	9	2	2	1	1

Attack feasible even with imperfect model

Leaking Set Collision Attack

Number of Traces	16 x 256	32 x 256	48 x 256	64 x 256
Guessing Entropy	46.78	17.78	7.00	1.00
1 st order Succ Rate	5.56%	44.4%	83.3%	100.0%
4 th order Succ Rate	33.3%	55.6%	83.3%	100.0%

→Clear distinguishability with 16k traces

Conclusions

- Low-entropy masking schemes have distinguishable leakage distributions
- "Efficient" univariate attacks exploiting this leakage are available
- Self-complementary masks enable selfcollision attacks: Leaking Set Collision Attacks

Thank you for your attention!

<u>users.wpi.edu/~teisenbarth</u> teisenbarth@wpi.edu xye@wpi.edu

References

- [SLP05] A stochastic model for differential side channel cryptanalysis; W. Schindler, K. Lemke, and C. Paar
- [OM07] Template attacks on masking resistance is futile; E. Oswald and S. Mangard
- [LP07] Analyzing side channel leakage of masked implementations with stochastic methods; K. Lemke-Rust and C. Paar
- [DPRS11] Univariate side channel attacks and leakage modeling; J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert
- [MME10] Correlation-enhanced power analysis collision attack; A. Moradi, O. Mischke, T. Eisenbarth